Endogenous Retinoic Acid Activity in Principal Cells and Intercalated Cells of Mouse Collecting Duct System
نویسندگان
چکیده
BACKGROUND Retinoic acid is the bioactive derivative of vitamin A, which plays an indispensible role in kidney development by activating retinoic acid receptors. Although the location, concentration and roles of endogenous retinoic acid in post-natal kidneys are poorly defined, there is accumulating evidence linking post-natal vitamin A deficiency to impaired renal concentrating and acidifying capacity associated with increased susceptibility to urolithiasis, renal inflammation and scarring. The aim of this study is to examine the presence and the detailed localization of endogenous retinoic acid activity in neonatal, young and adult mouse kidneys, to establish a fundamental ground for further research into potential target genes, as well as physiological and pathophysiological roles of endogenous retinoic acid in the post-natal kidneys. METHODOLOGY/PRINCIPAL FINDINGS RARE-hsp68-lacZ transgenic mice were employed as a reporter for endogenous retinoic acid activity that was determined by X-gal assay and immunostaining of the reporter gene product, β-galactosidase. Double immunostaining was performed for β-galactosidase and markers of kidney tubules to localize retinoic acid activity. Distinct pattern of retinoic acid activity was observed in kidneys, which is higher in neonatal and 1- to 3-week-old mice than that in 5- and 8-week-old mice. The activity was present specifically in the principal cells and the intercalated cells of the collecting duct system in all age groups, but was absent from the glomeruli, proximal tubules, thin limbs of Henle's loop and distal tubules. CONCLUSIONS/SIGNIFICANCE Endogenous retinoic acid activity exists in principal cells and intercalated cells of the mouse collecting duct system after birth and persists into adulthood. This observation provides novel insights into potential roles for endogenous retinoic acid beyond nephrogenesis and warrants further studies to investigate target genes and functions of endogenous retinoic acid in the kidney after birth, particularly in the collecting duct system.
منابع مشابه
Retinoic Acid Receptor-Dependent, Cell-Autonomous, Endogenous Retinoic Acid Signaling and Its Target Genes in Mouse Collecting Duct Cells
BACKGROUND Vitamin A is necessary for kidney development and has also been linked to regulation of solute and water homeostasis and to protection against kidney stone disease, infection, inflammation, and scarring. Most functions of vitamin A are mediated by its main active form, all-trans retinoic acid (tRA), which binds retinoic acid receptors (RARs) to modulate gene expression. We and others...
متن کاملThe effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells
Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...
متن کاملAxial heterogeneity of vasopressin-receptor subtypes along the human and mouse collecting duct.
Vasopressin and vasopressin antagonists are finding expanded use in mouse models of disease and in clinical medicine. To provide further insight into the physiological role of V1a and V2 vasopressin receptors in the human and mouse kidney, intrarenal localization of the receptors mRNA was determined by in situ hybridization. V2-receptor mRNA was predominantly expressed in the medulla, whereas m...
متن کاملAFLUID Apr. 45/4
Weiner, I. David, Amy E. Frank, and Charles S. Wingo. Apical proton secretion by the inner stripe of the outer medullary collecting duct. Am. J. Physiol. 276 (Renal Physiol. 45): F606–F613, 1999.—The inner stripe of outer medullary collecting duct (OMCDis) is unique among collecting duct segments because both intercalated cells and principal cells secrete protons and reabsorb luminal bicarbonat...
متن کاملApical proton secretion by the inner stripe of the outer medullary collecting duct.
The inner stripe of outer medullary collecting duct (OMCDis) is unique among collecting duct segments because both intercalated cells and principal cells secrete protons and reabsorb luminal bicarbonate. The current study characterized the mechanisms of OMCDis proton secretion. We used in vitro microperfusion, and we separately studied the principal cell and intercalated cell using differential...
متن کامل